Letter to the Editor

A Note on "Approximation of Bounded Sets"

DAN AMIR

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel Communicated by Oved Shisha Received February 8, 1983; revised July 30, 1984

In [2], Freilich and McLaughlin looked for a characterization of best simultaneous approximations (Chebyshev centers) for bounded (not necessarily compact) sets. They considered the following general setting:

Let X be a normed linear space, V and F nonempty subsets of X with Vconvex and F bounded. We are looking for $v_0 \in V$ which minimizes $r(v, F) = \sup_{x \in F} ||x - v||$. Let K be a $\sigma(V, X^*)$ -compact subset of the dual unit ball $B(X^*)$ which norms F - V, i.e., such that ||x - v|| = $\sup_{f \in K} f(x-v)$ for all $x \in F$, $v \in V$ (we may take, e.g., $K = B(X^*)$). On the compact space $(K, \sigma(V, K))$, consider the upper-semicontinuous function $U_F^+(f) = \limsup_{K \ni g \to \sigma(V,K)} \sup_{x \in F} g(x) = \inf \sup_{g \in W} \sup_{x \in F} g(x)$ over all $\sigma(V, K)$ -neighborhoods W of f in K.

The main result of [2], Theorem 2, claims that if $v_0 \in V$, then v_0 is a best simultaneous approximation of F in V if and only if, for each $v \in V$, there is an $f \in \text{ext } K$ satisfying:

(1) $U_{E}^{+}(f) - f(v_{0}) = r(v_{0}, F)$ and

(2)
$$f(v-v_0) \leq 0.$$

The necessity part is, unfortunately, false as can be seen by taking $V = X = c_0, F = \{ \pm ((n-1)/n) e_n; n = 1, 2, ... \}$ (where (e_n) is the unit vector basis of c_0 , $K = B(c_0^*) = B(l_1)$. Clearly $v_0 = 0$ is a best simultaneous approximation of F, with r(0, F) = 1. However, no $f \in \text{ext } K$ can satisfy (1): such an f must be of the type $\pm e_i^*$ for some j (where (e_i^*) is the unit vector basis of l_1), and if $\varepsilon > 0$ is any and $g \in W_{\varepsilon} = \{g \in K; |g(e_i) - f(e_i)| < \varepsilon\}$, then $\|g - f\| = \sum_{i \neq j} |g(e_i)| + |g(e_j) - f(e_j)| = \|g\| - |g(e_j)| + |g(e_j) - f(e_j)|$ < $1 - (1 - \varepsilon) + \varepsilon = 2\varepsilon$, so that $\sup_{x \in F} g(x) < \sup_{x \in F} f(x) + ||f - g||$ $\sup_{x \in F} ||f|| < 1 - (1/j) + 2\varepsilon$, thus $U_F^+(f) \leq 1 - (1/j)$.

The mistake is due to Lemma 1, which claims that U_F^+ is a convex function on K. Indeed, in our example we have $U_F^+(0) = 1$ while U_F^+

All rights of reproduction in any form reserved.

 $(\pm e_i) = 1 - (1/i)$. The error in the proof is the assertion that the translate of a $\sigma(V, K)$ -open set is open again (in the relative topology).

The correct version of the theorem, using the same notation, seems to be:

THEOREM 1. $v_0 \in V$ is a best simultaneous approximation of F in V if and only if for every $v \in V$ there is an f in the $\sigma(V, K)$ -closure of ext K which satisfies (1) and (2).

Proof. For the sufficiency part, any $f \in B(X^*)$ satisfying (1) and (2) will do: For, given $v \in V$ and any $\varepsilon > 0$, take $g \in K$ with $|g(v_0) - f(v_0)| < \varepsilon$. $|g(v) - f(v)| < \varepsilon$ and $x \in F$ with $g(x) - f(v_0) > r(v_0, F) - \varepsilon$. Then $||x - v|| > \varepsilon$ $g(x-v) = g(x) - g(v) > g(x) - \varepsilon - f(v) \ge g(x) - \varepsilon - f(v_0) > g(x) - \xi - g(x) - \xi - g(x) - g(x)$ $r(v_0, F) - 2\varepsilon$. Since $\varepsilon > 0$ was arbitrary, $r(v, F) = \sup\{||x - v|| : x \in F\} \ge \varepsilon$ $r(v_0, F)$.

For the necessity, observe first that $U_F^+(f) - f(v_0) \leq r(v_0, F)$ for all $f \in K$. Indeed, if $\varepsilon > 0$ is any and $W = \{g \in K; |f(v_0) - g(v_0)| < \varepsilon\}$, then for all $x \in F$ and $g \in W_{\varepsilon}$, we have $g(x) - f(v_0) < g(x) - g(v_0) + \varepsilon \leq ||x - v_0|| + \varepsilon \leq \varepsilon$ $r(v_0, F) + \varepsilon$.

Given $v \in V$, take $x_n \in F$ with $||x_n - v|| > r(v_0, F) - (1/n)$ and then take $f_n \in \text{ext } K \text{ with } f_n(x_n - v) > r(v_0, F) - (1/n)$. Let g_1 be a $\sigma(V, K)$ -limit point of a subnet $(f_{n(\alpha)})$ of the (f_n) . Then $U_F^+(g_1) - g_1(v) \ge \limsup_{\alpha} f_{n(\alpha)}(x_{n(\alpha)}) - g_1(v) \ge \lim_{\alpha} \sup_{\alpha} f_{n(\alpha)}(x_{n(\alpha)})$ $\lim_{\alpha} f_{n(\alpha)}(v) = \lim \sup_{\alpha} f_{n(\alpha)}(x_{n(\alpha)} - v) \ge r(v_0, F). \quad g_1 \quad \text{satisfies} \quad (2), \quad \text{since}$ $g_1(v-v_0) = \lim_{\alpha} f_{n(\alpha)}(v-v_0) \leq \limsup_{\alpha} (f_{n(\alpha)}(x_{n(\alpha)}-v_0) - f_{n(\alpha)}(x_{n(\alpha)}-v))$ $\limsup_{\alpha} f_{n(\alpha)}(x_{n(\alpha)} - v_0) - \liminf_{\alpha} f_{n(\alpha)}(x_{n(\alpha)} - v) \qquad \leqslant \qquad r(v_0, F) - r(v_0, F) - r(v_0, F) \leq r(v_0, F) - r(v_0, F) \leq r(v_0, F) + r(v_0, F) \leq r(v_0, F) + r(v_0, F) \leq r(v_0, F) \leq r(v_0, F) + r(v_0, F) \leq r(v_0, F) < r(v_0, F$ \leq $r(v_0, F) = 0.$

Let $v_n = (1/n) v + (1 - (1/n)) v_0 \in V$. Let $g_n \in \overline{\text{ext}} K$ be as above, i.e., with $U_F^+(g_n) - g_n(v_n) \ge r(v_0, F)$ and satisfying (2). Let f be a $\sigma(V, K)$ -limit point of a subnet $(g_{n(\beta)})$ of the (g_n) . Then f clearly satisfies (2). Since $U_F^+(g_n)$ – $g_n(v_0) = U_F^+(g_n) - g_n(v_n) - (1/n) g_n(v - v_0) \ge r(v_0, F) - (1/n) g_n(v - v_0)$ and since $U_F^+ - v_0$ is upper-semicontinuous on K, we have $U_F^+(f) - f(v_0) \ge$ $\lim \inf_{n} (r(v_0, F) - (1/n) g_n(v - v_0)) = r(v_0, F).$

As in Proposition 2.7 of [1], one can proceed from Theorem 1 to prove the noncompact analogue of the Laurent-Tuan theorem:

THEOREM 2. With the same assumptions and notations, $v_0 \in V$ is a best simultaneous approximation of F in V if and only if there is $\varphi_0 \in \overline{\text{conv}} \{ f \in \overline{\text{ext}} K; f \text{ satisfies } (1) \}$ such that $\varphi_0(v_0) = \max_{v \in V} \varphi(v)$.

References

1. D. AMIR AND J. MACH, Chebyshev centers in normed spaces, J. Approx. Theory 40 (1984), 364-374.

^{2.} T. H. FREILICH AND H. W. MCLAUGHLIN, Approximation of bounded sets, J. Approx. Theory 34 (1982), 146-158.